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1 Introduction

Throughout its mission, the Origins Spectral Interpretation Resource Identification Security-Regolith Ex-
plorer (OSIRIS-REx) spacecraft will rely heavily on various optical measurements to provide navigation
updates. During Approach through Orbit A, the optical navigation (OPNAV) measurements will take the
form of star based navigation, which provides bearing measurements to the body (in this case the asteroid
Bennu). Starting in Orbit A and continuing up through Sample Collection the OPNAV measurements will
take the form of surface feature tracking, which provides the capability for a full attitude and position update
of the spacecraft (assuming enough surface features can be identified). In this document we will examine
the mathematical foundation and theory that the OSIRIS-REx operational software uses to compute surface
feature OPNAV measurements.

At its core, surface feature navigation is a simple concept comprised of two main steps. First, a photograph
of a body is taken and processed either autonomously or by hand to identify the locations of known surface
features from the body in the image. Second, the locations of the identified features in the photo and the
known asteroid-fixed locations of the surface features provide 2D-3D point correspondences which can be
used to triangulate the location and orientation of the camera which took the photo. This process is shown
in Fig. 1.

Figure 1: Surface feature navigation is a simple concept. First a photograph is captured of a body
with known surface features. Then, the known surface features are located and identified
in the photo. Finally the correspondence between the asteroid-fixed location of the known
surface features and the location of the known surface features in the photograph frame are
used to triangulate the location of the camera that took the photo.

For OSIRIS-REx, these two steps are handled by two different software programs. The identification of
surface features is handled autonomously by the Stereophotoclinometry (SPC) programs developed by Dr.
Robert Gaskell of the Planetary Sciences Institute. After the surface features have been identified and located
in the photos, the point correspondences are passed to the orbit determination software, which updates the
spacecraft’s positioning and pointing with respect to the body being observed (along with other geodetic
parameters) using these correspondences.

In the rest of this paper, we begin by reviewing the pinhole camera model and the numerous frames that will
be used throughout the rest of the paper. These sections serve as an introduction to the topics for those who
are unfamiliar with them, and as a way to introduce notation to those who are. After the discussion of the
camera models and coordinate frames, we continue by examining the surface feature navigation measurement
model, which manipulates the 2D-3D point correspondences into updates to the spacecraft state. We use the
discussion of the measurement model to both introduce the concept of using 2D-3D point correspondences to
navigate and to outline the results we need to get out of the SPC image processing. After our discussion of
the measurement model, we turn our attention to the SPC navigation routines that will be used to process
the OPNAV photos. We begin this section with a broad overview of the SPC process in general as well as
the SPC navigation process, and then proceed to discuss some of the finer implementation details of the
SPC navigation process.
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1.1 Frames and frame transformations

OPNAV type measurements frequently utilize many different coordinate frames (which is also true for many
other space-based navigation methods). The processes involved in surface feature navigation (particularly
SPC) are certainly not the exception to this rule. Therefore, in an attempt decrease confusion later, we will
now layout all of the different coordinate frames and the steps needed to change between them.1

To begin our discussion of coordinate frames, consider the three pictured in Fig. 2. The primary frame is
this system is the asteroid-fixed frame. The asteroid-fixed frame is centered at the approximate center of
mass of Bennu and rotates with Bennu2. The asteroid-fixed frame is key because the locations of the surface
features are fixed in time, which is not the case in the inertial frame. The next frame that will be used is
the camera frame which is described in detail in Section 1.1.1. The final frame shown in Fig. 2 is the local
maplet frame. In fact, there are numerous local maplet frames, one for each maplet that is created by the
SPC modelling processes. The maplet frames are all centered at the location of the landmark on the surface
of the body. The maplet and the maplet frame will be discussed more thoroughly in Section 3.1.

bx

by

bz

cx

cy

cz

mx

mymz

Figure 2: There are three primary frames that we need to worry about (beside the frames used for the
pinhole camera model). They are the asteroid-fixed frame (shown in orange), the maplet
frame (shown in blue) and the camera frame (shown in red). This figure is not drawn to
scale.

The steps required to transform between each frame are relatively simple. It will always require some rotation
and translation which we can write as

vA = TBA(vB + aB) (1.1)

where vA is the representation of vector v in frame A, vB is the representation of vector v in frame B, TBA
is the rotation matrix from frame B to frame A, and aB is the location of the origin of frame A expressed

1Whether or not we are successfully making things less confusing is certainly up for debate. At the very least this section
provides a fun opportunity to show off my lack of skills when it comes to drawing coordinate frames in tikz-3dplot and
PowerPoint.

2In practice, it is almost impossible to determine the true center of mass of the asteroid without a long and detailed
observation. Because of this we generally use the center of figure (center of the volume of the asteroid) as an approximate.
This leads to two options when it comes to estimating the spacecraft’s state. We can either estimate it relative to the center
of figure and then estimate the first order gravity harmonics to account for the offset between the center of figure and center
of mass, or we can estimate the state relative to the center of mass by estimating an offset between the center of figure and
center of mass. Both of these techniques are valid and this document is not focused on the estimation processes for the most
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in frame B.3 In addition, it is easy to find the rotation matrix from one frame to another. If you have the
directions of the axes of one frame expressed in another as unit vectors (i.e. you have 3 unit vectors defined
in the asteroid-fixed frame that form the axes for the camera frame), say (ĉx)B , (ĉy)B , and (ĉz)B then the
rotation matrix to go from frame C to frame B is simply4:

TCB =
[

(ĉx)B (ĉy)B (ĉz)B
]

(1.2)

where (ĉ•)B represents the unit vector in the direction of the • axis of the C frame expressed in the B frame
and TCB is the rotation matrix from the C frame to the B frame.

1.1.1 A brief review of camera models

Perhaps the biggest use of frames in SPC for navigation is the pinhole camera model. The pinhole camera
model attempts to describe how objects in three-dimensional space are projected onto a two-dimensional
plane to form a photograph. It assumes that the world is being viewed through a pinhole, such that light
travels in a straight path from the object, through the pinhole, and onto the focal plane of the camera.
Thus, the pinhole camera model is actually just a simple gnomic projection from R3 to R2. In this section
we briefly develop the pinhole camera model, loosely following the description in [1].

fy

F

fx

xF

f

Focal Plane

cx cy

cz
tBC

f

pP

cP

py

P

px

oy

O

ox

xO, xP

bz

by
bx

B

xC
xB

Photo Plane

Figure 3: A point, xB, is projected onto the image plane through the pinhole camera model.

To develop the mathematics behind the pinhole camera model, consider the scene in Fig. 3. In the scene, we
have a point, xB defined in frame B. We want to project this point onto the focal plane of the camera with
focal length f and camera center located at tB in frame B. Our first step is to express xB in the camera
frame (frame C). We can do this using the simple rotation and translation given by

xC = TBC (xB − tB) (1.3)

where xC is point xB expressed in the camera frame, tB is the location of the camera center (and origin of
the camera frame) in frame B, and TBC is a rotation matrix from frame B to the camera frame. Further, we
can also express this transformation from frame B to frame C using homogeneous coordinates as

xC = TBC
[
I3×3 −tB

]
(xh)B = E(xh)B (1.4)

part; therefore, we will no longer discuss this topic.
3Throughout this work we will use the following notation: bold upright uppercase letters will indicate matrices, bold upright

lowercase letters will indicate column vectors, and non-bold characters will be scalars. Furthermore, uppercase non-bold
subscripts will indicate the frame that a vector is expressed in. Finally, hats over a vector will indicate a unit vector.

4I would expect that most people reading this will already know this. In spite of this I have included this in case anyone may
not be familiar with this and as a quick reference to myself, as I find that I frequently need to think about how the orientation
of the vectors should be in the rotation matrix.
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where I3×3 is the 3×3 identity matrix, (xh)B is the homogeneous version of xB , and E = TBC
[
I3×3 −tB

]
is the extrinsic camera matrix (thus called because it is entirely dependent on the scene or external param-
eters).

Now that we have expressed our point of interest in the camera frame we can begin considering the projection.
Start by examining the slice of the cy–cz plane from Fig. 3 shown in Fig. 4. As should be apparent, we are

cz

cy

xF

xC

Focal Plane Photo Plane
zC

yO
yC

yF

ff
xO

pP OC
F

Figure 4: A slice of the cy–cz plane from the scene in Fig. 3
.

simply working with similar triangles. To determine the y−coordinate of the point in the focal plane, we
just need to multiply by the scaling term f/zc and flip the sign to account for the fact that we have crossed
the principal axis. This allows us to express the coordinates where the point projects onto the focal plane
as follows:

xF = − f

zC

[
xC
yC

]
(1.5)

where xF is the point expressed in the focal frame and f is the focal length of the camera expressed in units
of pixels5.

This is the simplest version of the pinhole camera model; however, in this case our photo of the real world
has actually been flipped upside down and left/right due to the fact that we crossed the principal axis on
the way to the focal plane6. In most modern cameras, the photo that is output after capturing a scene has
been corrected to be in the same orientation as the world and this is what most people expect when they see
a photo. In order to account for the internal corrections of the camera it is common to skip using the focal
plane projection and instead define a new imaginary “photo plane” placed a distance of f in front of the
camera center7. Working in the photo frame allows us to work with the photograph as it actually appears
(and how scenes appear to our eyes). The only thing we need to change to work in this frame is the negative
sign in front of equation 1.5 to give us

xO = f

zC

[
xC
yC

]
. (1.6)

where xO is the location of the point in the photo frame8.

One assumption that we have made here that is commonly broken is that the principal axis aligns with the
origin of the coordinate system we are using in the photo frame. Frequently, the coordinate system origin is

5In practice, what we would like to do is take the focal length in units of distance (millimeters, inches, etc.) and then divide by
the pixel pitch in order to get the focal length in units of pixels. In practice, however, it is impossible to estimate both the pixel
pitch and the focal length of the camera, therefore we need to simply estimate the ratio between them. In the end everything
works out the same but it may be confusing to some. In other models, such as the Owen model which will be discussed shortly, we
can get around this by assuming a nominal (manufacturer specified) value for the pixel pitch or the focal length, which allows us
to continue working in engineering units, but in the end we still do not know the true values for the pixel pitch or the focal length.

6As a fun thought experiment: this is also how our eyes work. The “photo” received by our cones and rods is flipped upside
down of the orientation of the objects in the real world. Presumably our brain then corrects this image to match the actual
orientation of the real world. . . or does it? Perhaps what we see is actually the inverse of the real world and we would never
know it because we have never experienced differently. Of course this might then imply that the photo as it appears on the
focal plane would appear in the correct orientation, or would it? Anyway, I digress.

7In the literature this is referred to as the “image plane.” We have used the word photo here for reasons discussed later.
8Note that if the x− and y−axes of our picture frame are flipped from the x− and y−axes of our photo frame, we can

account for this here by changing the sign of the x−term, y−term, or both terms to account for the flips.
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placed in one of the corners of the image, (see frame P in Fig. 3 for an example). In addition, the principal
axis may not always be perfectly aligned with the center of the photo plane (note that the principal axis
is by definition perpendicular to the photo and focal planes). This then leads to two coordinate systems
with origins on our photo plane, the photo frame, whose origin is located at the principal point (frame I in
Fig. 3), and the picture frame, whose origin is located at the beginning of the coordinate system used to
reference the photo itself (frame P in Fig. 3. To correct for these differences, it is common to include an
offset term to account for the difference between the principal point (point p in Fig. 3) and the origin of the
picture coordinates (the picture frame, frame P in Fig. 3). This is given by

xP = xO + pP (1.7)

where xP is the location of the point in the picture frame and pP is the location of the principal point in
the picture frame. Further, we can describe the entire projection and translation as

xP = 1
zC

[
f 0 px
0 f py

]
xC = 1

zC
NxC (1.8)

where
N =

[
f 0 px
0 f py

]
(1.9)

is the intrinsic camera matrix9 (thus called because it is entirely dependent on the camera itself, or the
internal parameters) and px and py are the x and y components of the principal point expressed in the
picture frame. Finally, we can define the complete camera matrix to be

C = NE (1.10)

such that we have
xP = 1

zC
C(xh)B (1.11)

as the full mapping from an arbitrary frame B to the picture frame of a camera. This completes the basic
pinhole camera model.

In real life the pinhole camera model does not fully account for everything that is happening in a camera.
Things like lens distortions, mis-alignment of the focal plane, and other issues cause differences between the
results predicted by the pinhole camera model and the actual results from a camera. Luckily much work has
gone into ways to account for these errors through what are called distortion models.

There are numerous distortion models that can be used; however, in this case we will focus primarily on the
Owen distortion model because it is used most frequently in SPC processing. The Owen Model, as described
in [2] and in the Stereophotoclinometry source code, is very similar to the basic pinhole camera model with
a few slight modifications. The first modification is the inclusion of a distortion model to account for real
world lenses. In this case, to apply the distortion, we first must transform our point in the camera frame
to a point in the photo plane as is done in Eq. 1.6. In this case f is the actual physical focal length of the
camera (usually expressed in millimeters). Now that we are in the photo space we can begin applying the
distortions.

The first distortion type that is considered by the Owen model is a fourth order radial distortion given by

∆(xO)rad = ε1r
2xO + ε2r

4xO (1.12)

where ε1,2 are the radial distortion coefficients and r =
√
x2
O + y2

O is the radial distance from the principal
point of the camera. Radial distortions take the form of pincushion or barrel effects and are caused by the
way that lenses bend the light that passes through them. An example of radial distortion is shown in Fig. 5.

9In the literature this is matrix K; however, we have switched notation here to avoid confusion with the K matrix in the
Owen model.
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(a) None (b) Pincushion (c) Barrel

Figure 5: An example of the two different kinds of radial distortion. Pincushion distortion occurs
when ε1 and ε2 are positive and barrel distortion occurs when ε1 and ε2 are negative. A
mixing of the signs of ε1 and ε2 will lead to a mixing of the distortions.

The next distortion considered is a tangential distortion according to [3] (although it is referred to as a
tip/tilt/prism distortion in [2]). This is given by

∆(xO)tan = ε3yOxO + ε4xOxO (1.13)

where ε3,4 are the tangential distortion coefficients and xO and yO are the coordinates of the point in the
photo frame. Tangential distortions are mostly caused by lens elements that are not perfectly aligned with
the principal axis [3]. An example of the effect of tangential distortions in shown in Fig. 6.

(a) None (b) ε1+, ε2+ (c) ε1−, ε2+ (d) ε1−, ε2− (e) ε1+, ε2−

Figure 6: Examples of tangential distortions. Each subfigure is labeled with the signs of the tangential
distortion coefficients that have been used to generate them

The final distortion considered by the Owen model is not documented anywhere and only seems to appear
in the SPC version of the Owen model. It appears that it may be some form of radial distortion but the
implementation is odd due to the cross with the x and y terms and the negative sign for the x terms. This
distortion is given as

∆(xO)pin = (ε5r + ε6r
3)
[
−yO
xO

]
(1.14)

where ε5,6 are the extra distortion coefficients. This distortion was used to generate the grids in Fig. 7. As
can be seen, it appears to create something of a pinwheel10 effect on the grids. 11

The total distortion model is found by summing the terms from Eqs. 1.12-1.14:

(xO)dist = xO + ∆(xO)rad + ∆(xO)tan + ∆(xO)pin (1.15)

where (xO)dist is the distorted location of the point in the photo frame.

Now all that remains is to move the points from the photo frame to the picture frame. This is done using

xP =
[
Kx Kxy px
Kyx Ky py

] [
(xO)dist

1

]
(1.16)

10This term does not appear anywhere in the literature. I have come up with it myself
11Ask Dr. Gaskell about this!
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(a) None (b) Clockwise (c) Counter-clockwise

Figure 7: Examples of radial pinwheel distortions. Clockwise pinwheels are generated with ε5 and ε6
being positive. Counter-clockwise pinwheels are generated with ε5 and ε6 being negative.

where the K terms scale/rotate into the picture frame and have units of pixels/distance (with distance being
the same unit as the focal length)[2]. The K terms in Eq. 1.16 require some more discussion. First, in an
ideal detector with square pixels, Kx = Ky and Kxy = Kyx = 0 such that Kx and Ky would just serve
as a unit conversion from distance to pixels [2]. If the pixels were rectangular then we would have that
Kx 6= Ky while Kxy and Kyx would still be 0 [2]. It is therefore apparent that Kx and Ky account for both
the conversion from distance to pixels as well as potential differences in pixel size (whether by design or
not). The off-diagonal terms only come into play if the x and y axes are not perfectly perpendicular due to
a manufacturing error and therefore estimate the skewness of the imaging array. In the SPC version of the
Owen model there are also two additional terms, Kxxy and Kxyy which are multiplied by product of the x
and y components of the point (xO)dist and added to the picture frame coordinates. It is not apparent what
these terms are supposed to measure based off of the SPC source code and they are not described in the
literature. In addition, in practice it appears that these terms are usually 0, so we will not pay any further
attention to them for now. 12

In practice it is impossible to estimate all of the K parameters due to observability issues, therefore the
following is common practice for implementation according to [2]. First, the value of Kx is held fixed at the
manufacturer’s specified value, while the value of Ky is allowed to vary to account for the non-squareness
of the pixels. Second, the value for f is estimated in order to account for changes in overall scale. Finally,
the value of Kxy is held fixed at 0 while the value of Kyx is allowed to vary in order to account for a
non-perpendicular angle between the x and y axes of the detector. This completes the Owen camera model.

2 The surface feature navigation measurement model

The end goal for all the processing steps in this paper is to provide information which can be used to
update the spacecraft’s state. In particular, we are interested in determining updates to the position and
attitude of the spacecraft through the use of our 2D-3D point correspondences. In order to do this we need
a measurement model and the measurement partials.

Luckily for us, we have already thoroughly examined our measurement model for surface feature navigation.
It is simply the camera model (in this case we are using the Owen camera model), which when given the
spacecraft’s position (tB) and attitude (TCB) as well as the location of the landmark in the asteroid-fixed
frame (xB) provides an estimate of the measurement in the form of the picture frame location of the landmark
projected onto the photo plane. We now restate all of the equations needed for the measurement model here

12Ask Dr. Gaskell about this!
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for convenience. For an in-depth discussion of these equations please refer to the previous section.

xC = TBC (xB − tB) (2.1)

xI = f

zC

[
xC
yC

]
(2.2)

∆(xI)rad = ε1r
2xI + ε2r

4xI (2.3)
∆(xI)tan = ε3yIxI + ε4xIxI (2.4)

∆(xI)pin = (ε5r + ε6r
3)
[
−yI
xI

]
(2.5)

(xI)dist = xI + ∆(xI)rad + ∆(xI)tan + ∆(xI)pin (2.6)

xP =
[
Kx Kxy px
Kyx Ky py

] [
(xI)dist

1

]
(2.7)

With our measurement model in hand all we need is a way to update our state given a measurement and our
current best estimate of our state. We can do this in multiple ways, but perhaps the easiest to understand
is through the use of a least squares problem.

In our set up, we are looking to determine the state vector that minimizes the distance between all of our
predicted and actual measurements. That is

min
χ

n∑
i=1

(f(χ,xBi)− yi)
2 (2.8)

where χ =
[
tTB δθT

]T is the state vector, δθ is an additive update to our attitude matrix,13 yi is the ith
measurement (picture frame location of the ith landmark), f(χ,xBi) is a vector function of the measurement
model (Owen camera model) evaluated using the state vector and the ith landmark location in the asteroid-
fixed frame, and we have a total of n landmarks that we have identified in our photo. Note that we may
also what to include the asteroid-fixed locations of our landmarks in the state vector as well in which case
χ =

[
tTB δθT xTB1 . . . xTBn

]
.14 Regardless of what our state vector is we can equivalently express

Eq. 2.8 using matrix-vector notation as

min
χ

= Tr
[
(F(χ)−Y)T (F(χ)−Y)

]
(2.9)

where F(χ) =
[
f(χ,xB1) f(χ,xB2) . . . f(χ,xBn)

]
is a vector which stacks all of the estimated locations

of the landmarks into columns, Y =
[
y1 y2 . . . yn

]
is a vector which stacks all of the measured

locations of the landmarks in the picture frame into columns, and Tr [•] is the matrix trace operator which
sums all of the elements along the diagonal of a matrix.

Now, since we know we are looking for the χ that minimizes our objective function we want to find the state
where the derivative of the objective function is zero15. Using the rules of matrix-vector calculus and the
properties of the trace operator (namely that Tr

[
ATB

]
= vec(A)Tvec(B)) we can write

∂

∂χ

{
vec (F(χ)−Y)T vec (F(χ)−Y)

}
= 01×6 (2.10)

13This means that we can represent our true attitude as
(

TB
C

)+
= (I3×3 − [δθ×])

(
TB

C

)−
where a superscript of + indicates

the updated attitude matrix, a superscript of − indicates the previous attitude matrix, and [•×] indicates a skew symmetric
matrix formed from the vector •.

14If we wish to do this, however, we must be careful to ensure that we have enough information to make all of the states
observable, so it may be better to make the asteroid-fixed locations of the landmarks consider parameters instead. This topic
in filter practice is unfortunately outside the realm of this paper, so we will leave this topic here.

15In the scalar case it is easy to show that the location where the first derivative of this objective function is zero is a minimum
since our objective function is quadratic. In this case, where we are not dealing with scalars it is much harder to show this,
and in fact in some problems there are multiple locations where the first derivative is equal to zero, some of which may even
correspond to local maxima. A discussion on the assurances that we are finding a local minima are outside of the bounds of
this paper; however, so we will just proceed and hope that the result we get is truly the minimum (In practice it will be except
for some very specific cases which should not happen using real life data).
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where ∂
∂χ {•} indicates the partial derivative of • with respect to χ, 01×6 is a row vector with six columns

of zeros, and vec(•) stacks the columns of matrix • into a single column vector (i.e. vec
([

a1 a2 a3
])

=[
aT1 aT2 aT3

]T ). Using the rules of matrix-vector calculus and realizing that Y is not dependent on χ
we can express this derivative as

2vec (F(χ)−Y)T ∂

∂χ
{F(χ)} = 01×6. (2.11)

Now, our goal here is to solve for the χ that makes this equation true. This is nearly impossible (or actually
impossible, I have not checked) to do analytically using the fully non-linear version of F(χ). Therefore at
this point we need to make a linearization using a first order Taylor series expansion about our current best
estimate of χ. To do this we use the following substitution

f(χ+,xBi) ≈ f(χ−) + ∂f(χ,xBi)
∂χ

∣∣∣∣
χ=χ−

(
χ+ − χ−

)
(2.12)

where a superscript of − indicates the CBE of the state vector, a superscript of + indicates the updated
state vector based on the measurements, and •(x)|x=y indicates that the function is to be evaluated at y.
In addition, in order to simplify our notation we can define

Hi = ∂f(χ,xBi)
∂χ

∣∣∣∣
χ=χ−

=
[

∂xP i

∂tB

∂xP i

∂δθ

]
χ=χ−

(2.13)

where Hi is our ith Jacobian matrix of our measurement model with respect to our state vector evaluated
at the current best estimate of the state vector.16

Substituting in our linearization assumption and switching to the new notation we can now rewrite Eq. 2.11
as

2vec
(
F(χ+)−Y

)T ∂

∂χ+




f(χ−,xB1) + H1 (χ+ − χ−)
f(χ−,xB2) + H2 (χ+ − χ−)

...
f(χ−,xBn) + Hn (χ+ − χ−)


 = 01×6 (2.14)

which is nice because the only dependency on χ+ is when it appears by itself (within the partial derivative).
Therefore we can distribute our partial derivative and get to

2vec
(
F(χ+)−Y

)T


H1
H2
...

Hn

 = 01×6. (2.15)

Now in Eq. 2.15 it is not really clear how we can solve for our updated state vector. Therefore, let us rewrite
this equation as

[
HT

1 HT
2 . . . HT

n

]


f(χ−1,xB1) + H1 (χ+ − χ−)− y1
f(χ−1,xB2) + H2 (χ+ − χ−)− y2

...
f(χ−1,xBn) + Hn (χ+ − χ−)− yn

 = 06×1 (2.16)

where we have substituted in the Taylor series expansion for F(χ+), applied the vec operator, and taken the
transpose of the equation. Now we can carry out the inner product like matrix multiplication (not a true
inner product since we are multiplying a matrix by a vector, it just looks like one because of our notation)

16If we have defined our state vector to include the asteroid-fixed landmark locations then we would expand our Jacobian
matrix with n terms of ∂xP i

∂xBj
which will be equal to 0 except when i = j.
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from which we get
n∑
i=1

[
HT
i

(
f(χ−,xBi) + Hi

(
χ+ − χ−

)
− yi

)]
= 06×1 (2.17)

which is simply a set of six equations with six unknowns. If we collect the unknown terms on the left side
then we are left with

n∑
i=1

(
HT
i Hi

) (
χ+ − χ−

)
= −

n∑
i=1

[
HT
i

(
f(χ−,xBi)− yi

)]
(2.18)

which are the normal equations for this particular problem. If we define

∆χ = χ+ − χ−

∆Y =
[

(y1 − f(χ−,xB1))T (y2 − f(χ−,xB2))T . . . (yn − f(χ−,xBn))T
]T

H =
[
HT

1 HT
2 . . . HT

n

]T
then we can write this in the more familiar form of

HTH∆χ = HT∆Y. (2.19)

Now that we have the foundation for how we can update our state, we just need to finish defining our
Jacobian matrices. This is done by applying simple matrix-vector calculus to Eqs. 2.1-2.7. Further, to make
things easier, we can use the chain rule so that we can consider each equation individually. Using the chain
rule we have:

∂xPi
∂tB

= ∂xPi
∂ (xIi)dist

∂ (xIi)dist
∂xIi

∂xIi
∂xCi

∂xCi
∂tB

(2.20)

∂xPi
∂δθ

= ∂xPi
∂ (xIi)dist

∂ (xIi)dist
∂xIi

∂xIi
∂xCi

∂xCi
∂δθ

(2.21)

where ∂xP i

∂tB
and ∂xP i

∂δθ are the components of the ith Jacobian matrix of the measurement with respect to
the state. Further, it should be noted that the first three partial derivatives for these terms are the same,
therefore we only need to calculate ∂xP i

∂xCi
once for each measurement and then right multiply by either ∂xCi

∂tB

or ∂xCi

∂δθ to get the terms for our Jacobian, where ∂xP i

∂xCi
is the product of the first three partial derivatives for

the ith measurement.17

Getting the first three partials is a straightforward application of the rules of matrix-vector calculus, thus
we just present the results here without bothering with the “derivation” (The Matrix Cookbook is your
friend. . . ):

∂xPi
∂ (xIi)dist

= K
[
I2×2
01×2

]
(2.22)

∂ (xIi)dist
∂xIi

= (1 + ε1r
2
i + ε2r

4
i + ε3yIi + ε4xIi)I2×2 + xIi

(
2ε1ri

∂ri
∂xIi

+ 4ε2r3
i

∂ri
∂xIi

+
[
ε4 ε3

])
+(ε5ri + ε6r

3
i )
[

0 −1
1 0

]
+
[
−yIi
xIi

](
ε5
∂ri
∂xIi

+ 3ε6r2
i

∂ri
∂xIi

) (2.23)

∂xIi
∂xCi

= f

z2
Ci

[
zCi 0 −1
0 zCi −1

]
(2.24)

where K is the intrinsic camera matrix for the Owen model and
∂ri
∂xIi

= xTIi√
xTIixIi

(2.25)

17If we have defined our state to include the asteroid-fixed landmark locations then we would also have a term where we
multiply the first three partials on the right by ∂xP i

∂xBi
and then a bunch of terms right multiplied by a zero matrix.
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is the change in the radial distance from the origin of the photo frame with respect to a change in the points
location in the photo frame.

Finding the partials of the camera frame landmark location with respect to the state vector is a little trickier,
at least for the attitude component. For the spacecraft asteroid-fixed position component the partial is simply

∂xCi
∂tB

= −
(
TCB
)−

(2.26)

which is found using standard matrix-vector calculus. For the attitude portion first rewrite Eq. 2.1 as

xCi =
(
TCB
)−

(xBi − tB)− [δθ×]
(
TCB
)−

(xBi − tB) (2.27)

where [•×] indicates a skew-symmetric cross product matrix formed from • and
(
TBC
)−

is the current best
estimate of the camera’s attitude with respect to the asteroid-fixed frame. From here we can take the partial
derivative with respect to δθ

∂xCi
∂δθ

= 03×3 −
∂

∂δθ

{
[δθ×]

(
TCB
)−

(xBi − tB)
}
. (2.28)

Now, what we are trying to take the partial derivative of is a vector; therefore we can equivalently write

∂xCi
∂δθ

= − ∂

∂δθ

{
vec
(

[δθ×]
(
TCB
)−

(xBi − tB)
)}

(2.29)

where vec(•) is the operator that stacks the columns of a matrix into a single column vector. Performing
this step is important because it allows us to write

∂xCi
∂δθ

= − ∂

∂δθ

{((
xTBi − tTB

) (
TBC
)−
⊗ I3×3

)
vec ([δθ×])

}
(2.30)

using the properties of vectorization, where ⊗ indicates the Kronecker product. Now, we have the only term
dependent on δθ on the right hand side of the equation, which is necessary for matrix-vector calculus. This
allows us to write

∂xCi
∂δθ

= −
((

xTBi − tTB
) (

TBC
)−
⊗ I3×3

)
∂

∂δθ
{vec ([δθ×])} (2.31)

which leaves only one term undefined. The last undefined term is the partial derivative of the skew-symmetric
cross product matrix. Considering the form of the skew-symmetric cross product matrix, we can write this
partial derivative as

∂

∂δθ
{vec ([δθ×])} =



0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0
1 0 0
0 1 0
−1 0 0
0 0 0


(2.32)

which completely defines all of terms for the Jacobian for each measurement and allows us to update our
state vector. In practice, since we have linearized our non-linear function, this is only an estimate of the
optimal update. Therefore it is frequently necessary to iteratively refine the update by taking the newly
estimated state and reprocessing the measurements through the steps described in this section.
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3 Stereophotoclinometry for navigation

Stereophotoclinometry is a method by which a 3-Dimensional model of a planetary body can be made using
only photos taken from a monocular camera. It was developed as a way to identify surface features on small
planetary bodies, and created the added benefit that it provides a full 3D model that can be used for science
analysis among other things. In the following sections we will examine in detail the processes that form the
basis for SPC for navigation.

SPC for navigation can be easily broken down into fairly independent modules that each handle a specific
part of the required processing. These modules and the overall architecture are shown in Fig. 8. As can
be seen, the SPC for navigation modules primarily deal with the “image processing” section of the surface
feature navigation steps shown in Fig. 1. Further, it should be apparent that the SPC processes require
three primary inputs: the photo to be processed, the current best estimate of the spacecraft’s state, and the
model of the body being observed (in the form of maplets).

Spacecra'	  
Naviga-on	  
Filters	  

Camera	  
Extrac-on	  
Rou-ne	  

Predic-on	  
Rou-ne	  

Extrac-on	  
Filter	  

Correlator	  

Shape	  and	  
maplet	  
models	  

Model	  to	  
photo	  

conversion	  

Measurement	  
model	  

Body	  fixed	  loca-ons	  of	  models	  

Updated	  posi-on/
poin-ng	  of	  spacecra'	  

Current	  best	  es-mate	  of	  
camera	  posi-on/poin-ng	  

Physical	  models	  and	  
loca-ons	  

Photo	  of	  body	  

Image	  of	  
Illuminated	  

model	  

Image	  extracted	  onto	  
model	  surface	  

Extracted	  image	  with	  
shadows	  and	  non-‐
visible	  data	  removed	  

Predicted/extracted	  
offset	  in	  model	  frame	  

Predicted/extracted	  
offset	  in	  photo	  frame	  

Figure 8: The SPC surface feature navigation architecture. Inputs to the process are shaded or-
ange, the SPC modules are shaded green, the measurement model is shaded red, and the
navigation filter is shaded blue.
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3.1 SPC terminology

Before we continue, it is a good idea to formally define some of the terminology that will be used in the
following sections (and was used sparingly in previous sections). In SPC there are two different physical
models that are used to represent the surface of the planetary body. The first is a global shape model, which
provides information about the full surface of the body being considered. It is generally comprised of vertex
data all expressed in the asteroid-fixed frame, which provides the foundation for the model, and occasionally
includes relative albedo data which can be used to illuminate the surface.

The other physical model is referred to as a maplet. A maplet is similar to the global shape model in that
it provides the shape and relative albedo of the surface, but it is different in that it only covers a very
small section of the surface. Since only a small section of the surface is considered, this makes it easier to
have a much higher resolution in the maplets than can be achieved in the global shape model due to size
constraints. Further, instead of representing the vertices in the asteroid-fixed frame as is done for the global
shape models, the maplets express the vertices as elevation values above and below a local plane. This is
where the maplet frame discussed in Sect. 1.1 comes into play. It is used to define the local coordinate system
that the elevation data of the maplet is represented in. The xy−plane of the maplet frame is the local surface
that the height data is defined in reference to. Furthermore, the origin of the reference frame expressed in
the asteroid-fixed frame is defined as the landmark which is not necessarily inside of a distinguishable surface
feature. In conjunction with the maplet frame is something that we will refer to as the maplet grid. The
maplet grid is simply the mx and my locations for which we have elevation data. It is referred to as a
grid due to the fact that the mx and my data only take on values of evenly spaced integers in the maplet
frame. To see a demonstration of the maplet grid consult Fig. 9. Because of the layout of the grid, we will
occasionally refer to the grid cells as maplet pixels. Finally, the maplets also contain a scaling term. The
scaling term details how wide a maplet grid cell is in units of kilometers (or whatever unit of distance is
being used).

Figure 9: The maplet is made of height data, relative albedo data, a grid, a landmark, and a maplet
frame. The maplet height data is represented by the surface shown here. The underlying
maplet grid is shown beneath the height surface (the grid has been thinned out to show
effect). The maplet frame is shown in blue, and the landmark is the origin of the maplet
frame.

To further contrast these two different models we will now compare what each includes and does not include.
The global shape model contains vertex data, connectivity information, and occasionally albedo data all
expressed in the asteroid-fixed frame. The vertex data and connectivity information can be used to form
a closed volume that represents the entire body being observed. The height variations in the global shape
model are relatively low resolution. The maplet model contains height data along with implied connectivity
information defined according to a local reference plane where the normal vector of the local reference plane
is constrained to point in the same direction as the average of the surface normal information which can be
computed from the maplet data. It always contains relative albedo data. In addition, information about the
maplet frame is include in the maplet data. This includes the landmark (origin of the maplet frame expressed

Revision - 0 13 September 2015



DRAFT

OSIRIS-REx-SPCNAV

in the asteroid-fixed frame) and the unit vectors pointing in the direction of the x−, y−, and z− axes of the
maplet frame expressed in the asteroid-fixed frame. The height data and connectivity information contained
in the maplet cannot be used to form a closed volume, only a surface. It is generally much higher resolution
then the global shape model. An example of the difference between the shape model and the maplets is
shown in Fig. 10.

Figure 10: The maplet contains data about a small section of the surface, whereas the shape model
contains the overall geometry of the body. In this Figure, the maplet is shown as a red
grid, the shape model is the gray illuminated surface, the maplet frame are the blue axes
and the asteroid-fixed frame are the orange axes.

The last term whose meaning may not be obvious is relative albedo. Albedo is a measurement of the
reflectivity of a surface (i.e. how much of the incoming light is reflected versus absorbed by the surface).
A relative albedo is a relative measurement of the reflectivity of a surface. A relative albedo map attempts
to define how much more reflective sections of the surface are compared to others. We use relative albedos
because it is difficult to calculate the true albedo of a surface with the only data being that obtained from
an optical image of that surface, specifically because the SPC software does not contain any radiometry
model. For instance, consider a mirror laying next to a rock. It is easy to say that the mirror obviously has
an albedo that is higher than that of the rock, but without knowing the properties of the mirror and the
rock or having an idea of the true response of the detector we cannot say what the actual albedo for either
surface is.

3.2 Determining Which Maplets are Visible in a Photo

The first main step in SPC for navigation is to determine which maplets are visible in an photo (or at the
very least, which maplets should be visible if we are where we think we are). This check depends almost
entirely on the geometry of the scene according to the current best estimate of the spacecraft’s position at
the time the picture was taken. It requires three main inputs: maplet data, a specification of how much
of the maplet must be visible, and the prior information about the spacecraft state at the time the photo
was taken (also including the model for the camera that took the photo). Our first step is to use estimates
to ignore landmarks that have no chance of being visible in the photo (whether because of the illumination
conditions or the physical location of the landmark with respect to the camera). By using these simple
and broad checks first, we decrease the amount of computational expense. After we have removed as many
maplets as possible using these broad checks, we can then simply check to see if the predicted location of
the maplet in the picture frame falls within the bounds of the photo. In addition, we can specify that only
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a certain percentage of the maplet needs to be visible in the photo in order to process it. The steps used to
decide which maplets are kept for processing follow.

The first step in picking maplets in the photo is to determine the geometry of the camera itself. This is
done by calculating the half diagonal field of view (FOV) of the camera and by determining the line-of-sight
direction of the vector from the center of the camera to the center of the camera pixel array in the asteroid-
fixed frame. To calculate the half diagonal FOV consider the geometry in Fig. 11. As can be seen in the

cx
cy

cz
C

(xc)C

Λc

LOS through pixel array center

f

pP
cP

py
px

iy
ix

Figure 11: The geometry of the camera.

Figure, the half diagonal FOV is a measure of the angular distance of half the diagonal of the focal plane.
In order to calculate the cosine of this angle we can use

cos Λc = f√
(xc)TC(xc)C

(3.1)

and to get the sine of the angle we can use the Pythagorean identity

sin Λc =
√

1− cos2 Λc (3.2)

where Λc is the half diagonal FOV angle of the camera and (xc)C is the vector to the corner of the photo
expressed in the camera frame. In addition to the half diagonal FOV, we also need the line-of-sight direction
through the center of the pixel array expressed in the asteroid-fixed frame. To get the line-of-sight direction
through the center of the pixel array, we take the unit vector in the direction of the center point expressed
in the camera frame. Assuming our principal point is expressed in the picture frame, with the picture frame
origin in the upper left hand corner of the photo (as shown in Fig. 3) then this is expressed as

cO = cP − pP (3.3)

cC =

 K−1
x 0 0
0 K−1

y 0
0 0 1

[ cO
f

]
(3.4)

b̂B = TCB
pC√
pTCpC

(3.5)

where cP is the center point expressed in the picture frame, cO is the center point expressed in the photo
frame, pP is the principal point expressed in the picture frame, cC is the principal point expressed in
the camera frame, and b̂B is the line-of-sight direction through the center of the camera expressed in the
asteroid-fixed frame.

With the camera geometry defined we can now start considering the geometry of the rest of the scene.
The first thing we need is the vector and distance from the spacecraft to the landmark expressed in the
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asteroid-fixed frame. This is a simple addition:

(vsc−lmk)B = (vsc−body)B + (vbody−lmk)B (3.6)

dsc−lmk =
√
vTsc−lmkvsc−lmk (3.7)

where (vsc−lmk)B is the vector from the spacecraft to the landmark in the asteroid-fixed frame, (vsc−body)B
is the vector from the spacecraft to the body expressed in the asteroid-fixed frame, (vbody−lmk)B is the vector
from the body to the landmark expressed in the asteroid-fixed frame, and dsc−lmk is the distance between
the spacecraft and the landmark expressed in units of distance. Now we can calculate the approximate
maximum apparent angular size of the maplet. In order to do this we assume that the maplet frame z−axis
is directly in line with the line-of-sight vector through the center of the pixel array and then calculate the
angle between the apparent edge of the maplet in this orientation and the line-of-sight vector. The sine and
cosine of this angle can be calculated as

cos Λm = dsc−lmk√
d2
sc−lmk + dm/2

(3.8)

sin Λm =
√

1− cos2 Λm (3.9)

where Λm is the angular half size of the maplet and dm is the length of the sides of the maplet expressed
in kilometers (or whatever distance unit is being used). With this data in hand we can now calculate the
maximum angular distance that the landmark can be from the line-of-sight vector through the center of the
pixel array of the camera for any of the maplet to possibly be in the field of view (note that even if the
landmark center is within this distance it does not guarantee that any of the maplet will be visible in the
photo). This is done by simply summing Λm and Λc. In practice, this is done through the use of the double
angle formula as follows:

cos (Λm + Λc) = cos(Λc) cos(Λm)− sin(Λc) sin(Λm) (3.10)

Now we can begin checking for maplets that are not located within the photo.

The first check we perform is to check to see if the landmark is positioned such that any of the maplet could
possibly be visible within the field of view. We do this by comparing the angle between the line-of-sight
vector through the center of the pixel array and the line-of-sight vector to the landmark (calculated using a
dot product) with the sum of the diagonal half FOV and the maplet half angle calculated in Eq. 3.10. That
is we check if

b̂
T

B(v̂sc−lmk)B > cos (Λm + Λc) (3.11)

where (v̂sc−lmk)B is the unit vector in the direction of (vsc−lmk)B . If the above is true then it means that the
at least part of the maplet could be within the image. It is checking that the angle between the line-of-sight
vector through the center of the pixel array and the landmark center is smaller than the maximum angular
distance that can occur for any of the maplet to be visible (note that the fact that we are comparing cosines
and not angles flips the direction of the greater than).

The next test we perform is to check the orientation of the maplet. We do this by taking the dot product of
the maplet frame z−axis (roughly the normal vector of the entire maplet) with the line-of-sight vector from
the spacecraft to the landmark (which gives us the cosine of the angle between the vectors). If this value is
positive or smally negative then it means that the maplet is oriented in such a way that we are looking at
it from behind it (positive) or nearly from along the xy−plane of the maplet frame. Mathematically we can
perform this check as

− (v̂sc−lmk)TB(m̂z)B > 0.05 (3.12)

where (m̂z)B is the unit vector in the direction of the maplet frame z−axis expressed in the asteroid-fixed
frame. If the above evaluates as true then it means that the maplet frame is positioned in such a way that
it may be possible to view the surface from the camera. If it is not true then we can ignore this maplet for
this image.
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The next check is on the illumination of the maplet. Here we want to make sure that the sun is striking
the top of the maplet, and not the side or bottom. In order to do this we once again check the dot product
of the maplet frame z−axis, this time with the incoming sunlight vector. To check this mathematically we
have

(m̂z)TB ŝB > 0 (3.13)

where ŝB is the unit vector in the direction from the landmark to the sun expressed in the asteroid-fixed
frame (this is input along with the state at the time the photo was taken). If the above is true then it means
that the sun is above the maplet and it will be illuminated, and thus we can continue with the maplet. If it
is not true then we should discard the maplet for this photo.

After checking the sunlight we can now check the distance resolution of the photo at the maplet (the amount
of the surface that is covered by each pixel expressed in km/pix or some other unit of distance per pixel).
For this check we want to be sure that the resolution of the image at the maplet is above some predefined
threshold. The check for this case is easy

rimg > rthresh (3.14)

where rimg is the resolution of the photo at the maplet and rthresh is the threshold resolution18. Calculating
the resolution of the photo at the maplet is slightly more difficult. The first step is to calculate the deriva-
tive that relates the conversion from the maplet frame to the picture frame. This is done by using finite
differencing. Therefore we have

∂xP
∂mx

= x+
P − x−P
2δmx

(3.15)

where ∂xP /∂mx is the change in the picture location with respect to a change along the maplet frame
x−axis, x+

P is the picture frame location of the landmark plus some step δmx along the x−axis of the maplet
frame, and x−P is the picture frame location of the landmark minus some step δmx along the maplet frame
x−axis. Here, x±P are found by taking the perturbed points in the asteroid-fixed frame and running them
through the entire Owen camera model discussed in Section 1.1.1 to get the picture frame location of the
points. This finite differencing is completed for each axis of the maplet frame and that gives the maplet
to picture frame derivative. Once we have the maplet to picture frame derivative, we can continue with
calculating the resolution of our photo at the maplet. We do this by calculating the area of a maplet grid cell
in the picture plane, which is the determinant of the mx and my terms of the maplet to picture derivative19.
From here, we simply invert this value and multiply by the scaling term to go from units of maplet pixels to
kilometers. That gives us the resolution of the photo at the landmark.

Our next check is to check the size of the photo and the maplet. To do this we simply want to be sure that
the maplet is not larger than the area that we can see in our photo (because if it was it would be difficult to
correlate with that maplet). We already know the length of a side of the maplet in units of distance (dm)
so all we need to get is the length of the sides of our photo at the surface. Determining the actual length of
the sides at the surface is hard so instead we will make an estimate of their size (remember at this point we
are still using broad strokes to remove maplets that we do not want to spend a lot of time checking to see if
they are in the photo or not). To get the approximate length of the sides of our photo at the surface, we can
return to the photo resolution at the landmark. Since the photo resolution at the landmark approximately
tells us the size of one pixel at the landmark, if we multiply this value by the length of a side in pixels (or
by the length of a side if the area of the photo was formed by a square) then we have an approximate of the
size of our photo of the surface. Once we have this our check is simply

dm < dp (3.16)

where dp is the approximate length of a side of the photo at the landmark (by this we mean the distance
18Note that we only check the resolution of the photo at the landmark if we have already found a lot of other maplets that are

within the photo and we are trying to limit the amount of memory we are using. By default the resolution is checked starting
at 200 maplets; however, this value can be changed by setting the NUMLM value in the INIT_LITHOS file.

19When we have a Jacobian matrix that approximates a transformation from one coordinate system to another, part of the
Jacobian will rotate into the new coordinate frame and part will scale the results. Since we know that all rotation matrices have
to have a unit determinant, then we know that the scaling portion of the Jacobian is the value of its determinant, and that is why
we can claim that the determinant of the maplet to picture frame Jacobian is the size of a maplet grid cell in the picture frame.
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along the surface that is visible in the image). This completes the broad check that we are using to throw
out landmarks that have no chance of being seen in our image.

We can now attempt to actually determine whether a landmark is visible within the photo or not. This will
require at most 9 checks. First we will check to see if the landmark location falls within the bounds of the
photo. To do this we simply run the landmark location in the asteroid-fixed frame through the Owen camera
model described in Section 1.1.1 and see if the resulting picture location is within the bounds of our photo.
If the landmark location is within the bounds of our photo then this landmark is visible in our photo and
we continue to the next step with it. If it is not within the bounds of our photo then we can check to see
if a fraction of the landmark is within the photo. In order to do this, we simply set up a box of points at
some specified fractional distance along the maplet frame x− and y−axes and run them through the Owen
camera model. If any of these fall within our photo bounds then we keep the maplet and move onto the next
step. If none of these are within the photo then the maplet is thrown away. Mathematically the points we
will run through the Owen camera model are

pB = (vbody−lmk)Bdmw(km̂x + jm̂y), j, k = −1, 0, 1 (3.17)

where w is the fractional width which is specified by the user and pB are the points that we will check to
see if they lie in the photo. Note here that this is actually something of an inverse fractional width. That
is, if we want 90% of half of the maplet to be visible in the photo then we need to set w = 0.1 not w = 0.9.

3.2.1 Checking For Hidden Maplets

We have now identified maplets where at least part of the maplet is within the field of view. We have
not checked, however, to be sure that the portion of the maplet within the field of view is actually visible.
Therefore we now need to check whether the maplet is occluded by some other part of the shape or not. In
order to check whether our maplet is occluded by other parts of the surface we have a few different steps.
First we identify the picture frame position of our landmark using the Owen camera model. We now work
backwards through the Owen camera model to get a line-of-sight vector in the direction of the photo frame
position of the landmark. In the case where we have a distortion model for our camera (which is always
the case for real life images) this is a complicated process that requires an iterative solution. Once the
line-of-sight vector has been determined, the next step is to determine points on the surface of the body that
fall along the line-of-sight vector. Finally, we compare the closest point to the spacecraft that falls along the
line-of-sight vector to the location of our landmark. If these points are relatively close (within one percent of
the maximum diameter of the body) then the landmark is the first object along the line-of-sight vector and
it is not obscured by the rest of the surface. If the points are far away from each other then the landmark
is occluded by some other portion of the body and thus should not be used. We now discuss these steps in
detail.

The first step of getting the picture frame location of the maplet was already discussed in great detail in
Sect. 1.1.1. Returning from the picture frame location to a line-of-sight vector still needs discussion. In order
to do this, we must go from the distorted picture frame location of the landmark to the undistorted photo
frame location of the landmark (note that the undistorted photo frame location has also been converted
from units of pixels to units of distance), which entails a frame transformation, a unit transformation, and
the removal of a non-linear distortion model. There is not an easy analytic solution to do this so instead
we can use an iterative solution. First we set an initial guess of the undistorted photo frame location of the
landmark to be at the distorted picture frame location of the landmark. We do this by moving from the
picture frame to the photo frame and converting from units of pixels to units of distance. That is

x(1)
I =

[
K−1
x 0
0 K−1

y

]
(xP − pP ) (3.18)

where x(1)
I is the initial guess of our undistorted photo frame location and xP is the true distorted picture

frame location of our point. From here we can now apply the distortion model and the conversion to units of
pixels by going through Eqs. 1.15 and 1.16. Once we have transformed our initial undistorted photo frame
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location guess into a distorted location in the picture frame we can start our iterative updates. This is done
using

x(k)
I = x(k−1)

I +
[
K−1
x 0
0 K−1

y

](
xP − x(k−1)

P

)
(3.19)

where x(k)
I is the kth estimate of the undistorted photo frame location of our point, x(k−1)

I is the previous
estimate of the undistorted photo frame location of our point, and x(k−1)

P is the distorted picture location of
our previous estimate. We now return our undistorted photo frame location guess into a distorted picture
frame location guess by using Eqs. 1.15 and 1.16 and repeat the process. We iterate this process until the
difference between our true distorted picture frame location and the distorted picture frame guess is less
than some tolerance (1× 10−8 in the SPC source code).

Once we have our undistorted photo frame location we can now calculate the line-of-sight vector to the
landmark. We do this by taking the unit vector in the direction of the vector pointing from the center of
the camera frame to the undistorted photo frame location. That is

(v̂sc−lmk)C =

[
x

(k)
I y

(k)
I f

]T∥∥∥∥[ x(k)
I y

(k)
I f

]T∥∥∥∥ (3.20)

where (v̂sc−lmk)C is the line-of-sight vector from the spacecraft to the landmark, x(k)
O and y(k)

O are the x−
and y−components of the final undistorted photo frame location estimate of the point, and ‖ • ‖ indicates
the 2−norm of a vector.20 We can now take our line-of-sight vector and determine the point that it strikes
on the surface of the body.

To determine the point that we strike first on the body along the line-of-sight vector coming out of our camera
we have to turn to the technique of ray tracing. Ray tracing is a popular technique for many different optical
applications and computer graphics problems. We will now describe the algorithm that is used in the SPC
source code. The first thing we want to do is to define some specialized frame that uses the line-of-sight
vector as the z−axis for reasons that will become apparent later. Therefore let us define the following frame,
which we will henceforth refer to as the tilde frame:

z̃C = (v̂sc−lmk)C ỹC =
z̃C × (bx)C
‖z̃C × (bx)C‖

x̃C = ỹC × z̃C
‖ỹC × z̃C‖

(3.21)

where x̃C , ỹC , and z̃C are the unit vectors in the direction of the axes of the tilde frame expressed in
the camera frame, • × • indicates a cross product between two vectors, and (bx)C is the unit vector in the
direction of the asteroid-fixed frame x−axis expressed in the camera frame.21 This frame is shown in Fig. 12.

With the tilde frame defined we now wish to express all of the vertices of our shape model in this frame.
We do this by getting the vectors from the spacecraft to the vertices, rotating these vectors into the camera
frame, and then rotating them into the tilde frame. That is

ṽ(i)
sc−vert = TC∼T

B
C

[
(vsc−body)B +

(
v(i)
body−vert

)
B

]
(3.22)

where ṽ(i)
sc−vert is the vector from the spacecraft to the ith vertex expressed in the tilde frame, TC∼ is the

rotation matrix from the camera frame to the tilde frame given as

TC∼ =
[
x̃C ỹC z̃C

]T
, (3.23)

20It is unclear why we must go through the act of projecting the landmark location onto the photo plane, and then un-
distorting this projected location to get our line-of-sight when we could have just defined the line-of-sight vector as (v̂sc−lmk)C =
TB

C

[(
vsc−body

)
B

+
(

vbody−lmk

)
B

]
/
∥∥[(vsc−body

)
B

+
(

vbody−lmk

)
B

]∥∥ using information that we already know. Further-
more this line-of-sight vector is likely more accurate since we have not had to use the iterative solution to get to the un-distorted
photo frame location of the point. Anyway, I digress. . .

21It does not really matter how we define the ỹC or x̃C axes so long as they form a right-handed coordinate system and are
all orthogonal to each other.
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Figure 12: The geometry that is involved in the ray tracing. In this figure, all vectors having to
do with the landmark location are shown in blue, the tilde frame is shown in olive, an
example grid from the shape model is shown in violet, the vectors involving the center
of the asteroid’s body are drawn in orange, and the distance we are comparing is shown
in green. Note that this distance is the orthogonal distance from the grid vertices to the
z−axis of the tilde frame.

and
(
v(i)
body−vert

)
B

is the asteroid-fixed vector to the ith vertex.

After defining all of our spacecraft to vertex points in the tilde frame it is now possible to begin determining
where we strike the surface along our line-of-sight vector. Our first step is to throw away grids that have no
chance of falling along the line-of-sight vector (this helps to decrease the amount of computations we need
to complete later by throwing out a lot of the data with a relatively efficient step). This involves calculating
the maximum diagonal distance of all of the grid points, that is finding

d2
max = max

k,ij

{[(
v(ki)
body−vert

)
B
−
(
v(kj)
body−vert

)
B

]T [(
v(ki)
body−vert

)
B
−
(
v(kj)
body−vert

)
B

]}
(3.24)

where
(
v(ki)
body−vert

)
B

is vertex i of grid k expressed in the body frame,
(
v(kj)
body−vert

)
B

is vertex j of grid k
expressed in the body frame, maxk,ij {•} indicates to take the maximum value varying k and ij pairs, and
d2
max is the square of the maximum distance covered by any grid cell. Note that because of the way the

grid cell vertices are labeled (see Fig. 13), we only ever need to check two different ij pairs for each cell,
(i = 1, j = 3) and (i = 2, j = 4).22 Now, with our maximum cell distance in hand, we can throw out any
cells that have at least one point with an orthogonal distance to the tilde frame z−axis greater than the
maximum cell distance. That is we want to remove any cell k where

max
1≤i≤4

{[
x̃

(k)
i ỹ

(k)
i

] [ x̃
(k)
i

ỹ
(k)
i

]
− d2

max

}
> 0 (3.25)

is true. Here x̃(k)
i and ỹ(k)

i are the x− and y−components of the ith vertex of cell k expressed in the tilde
frame (see Fig. 13).

22We could perform this operation in whatever frame we want since all of our steps are linear transformations. I have
presented it here in the body frame because that is how it is done in the SPC source code.
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Having removed many of our cells we can now determine which cells are actually pierced by our line-of-sight
vector. To do this consider Fig. 13. In this Figure we see a cell with different possible intersection points
for our line-of-sight vector (we have projected everything onto the xy−plane of the tilde frame). Observe
the angles between the vectors from the interception of the line-of-sight vector (tilde frame z−axis) to the
corners. In the first cell all of the angles proceed in the same angular direction (counter clockwise). In the
remaining cells there is always one angle that proceeds in the opposite direction to the others (clockwise).
This implies that we can check for intersection with a cell by considering the cross products of the vectors
from the intersection of the line-of-sight vector with the cell plane to the corners of the cell. If all of these
cross products point in the same direction (particularly if they all point in the opposite direction as the
line-of-sight vector23) then the line-of-sight vector pierces the cell, otherwise it does not. Therefore, all we
have to do is consider the cross product of the 2D vectors from the tilde frame z−axis to the cell corners
projected onto the xy−plane of the tilde frame (done by setting the z−component of the ṽ(ki)

sc−vert vectors
equal to 0) and see if the z−components (which will be the only components) are all negative. That is, we
want to keep cells with

min
1≤i≤4

{
x̃

(k)
i ỹ

(k)
i+1 − x̃

(k)
i+1ỹ

(k)
i ≤ 0

}
= 1 (3.26)

where x̃(k)
i and ỹ(k)

i refer to the x− and y−components of the ith corner of the kth cell expressed in the tilde
frame, the grid cell points are defined as shown in Fig. 13, and when i is 4 then i+ 1 is 1.
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Figure 13: Projections of a shape model cell projected onto the xy−plane of the tilde frame with
possible locations of the tilde frame z−axis. We can use a cross product to identify cells
where all of the angles are pointing in the opposite direction of the tilde frame z−axis. In
these diagrams the tilde frame z−axis is going into the paper.

With the cells that are pierced identified all we need to do is determine how far along the line-of-sight vector
these intersection points are. To do this we need to interpolate the z−component values when the x− and
y−components are equal to 0 (since the z−axis of the tilde frame points along the line-of-sight vector). In the
SPC code bilinear interpolation is used to get the z−components which also represent the distance between
the center of the camera and the intersection point.

Bilinear interpolation is a 3D interpolation technique that attempts to fit the product of two linear functions
to data points in a cell (therefore, despite the name, a bilinear interpolation is not a linear function). It is a
relatively simple and efficient interpolation technique and provides plenty of accuracy for our needs in this
case. There is one problem though. Bilinear interpolation only works when the data is presented in a true
grid format. That is, it only works when the data points we are trying to fit to are rectangular or square in
the xy−coordinates of our fit. To visualize this examine Fig. 14.

Since our data is not regularly gridded, we cannot use a standard bilinear interpolation. Instead we have
to use 3 different bilinear interpolations, one on the x−data, one on the y−data, and one on the z−data.
To begin, let us assume that the four corners of the cell that we are considering are now expressed in a 5D
space where we have axes of ι, γ, x̃, ỹ, and z̃. Now let us assume that each ιγ pair corresponds to some

23The vectors will only point in the opposite direction of the line-of-sight vector if the cell corners are defined in a counter
clockwise manner when examined along the line-of-sight vector. This will always be the case for cells whose normal vectors are
pointing in the opposite direction of the line-of-sight vector due to the definition of a cell in the ICQ format. These are the
only cells we would want to consider anyway so this works to our advantage.
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A B C D E

Figure 14: Bilinear interpolation only works when the x and y data is gridded as is the case in blocks
A and B (assuming we are trying to fit the z data). If we want to fit scattered data (blocks
C − E) we need to use other tricks to try and make the data gridded.

point in our 3D tilde frame. Further, let us define that the following ιγ-x̃ỹz̃ pairings:

(0, 0)→

 x̃
(k)
1
ỹ

(k)
1
z̃

(k)
1

 (1, 0)→

 x̃
(k)
4
ỹ

(k)
4
z̃

(k)
4


(0, 1)→

 x̃
(k)
2
ỹ

(k)
2
z̃

(k)
2

 (1, 1)→

 x̃
(k)
3
ỹ

(k)
3
z̃

(k)
3


where (ι,γ) are the ιγ pairs and

[
x̃

(k)
i ỹ

(k)
i z̃

(k)
i

]T
are the corner points of our shape cells expressed in

the tilde frame. We are now working with gridded data in the ιγ plane therefore we can perform bilinear
interpolation in the ιγ plane on the components of our corner points expressed in the tilde frame. Now,
since we know we are looking for the point that corresponds to x̃ = 0 and ỹ = 0 we can set up a system
of equations to solve for the ιγ pair that corresponds to this point, and then use the calculated ιγ pair to
calculate the interpolated z̃ value at this point (see Fig. 15 for a visual layout of what is happening). This
leaves us the following system of two equations with two unknowns

0 = X0 +X1ι0 +X2γ0 +X3ι0γ0 (3.27)
0 = Y0 + Y1ι0 + Y2γ0 + Y3ι0γ0 (3.28)

where

X0 = x̃
(k)
1 X1 = x̃

(k)
4 − x̃(k)

1 X2 = x̃
(k)
2 − x̃(k)

1 X3 = x̃
(k)
1 − x̃(k)

2 − x̃(k)
4 + x̃

(k)
3 (3.29)

Y0 = ỹ
(k)
1 Y1 = ỹ

(k)
4 − ỹ(k)

1 Y2 = ỹ
(k)
2 − ỹ(k)

1 Y3 = ỹ
(k)
1 − ỹ(k)

2 − ỹ(k)
4 + ỹ

(k)
3 (3.30)

are the standard bilinear interpolation coefficients for the x̃ and ỹ values. It is easy to solve this system of
equations for ι0 and γ0. The results are as follows:

ι0 =
{
−CB −

AC2

B3 , A ≤ 1× 10−8

−B+
√
B2−4AC
2A , A > 1× 10−8 (3.31)

γ0 =
{
−X0+X1ι0
X2+X3ι0

, |X2 −X3ι0| > |Y2 + Y3ι0|
−Y0+Y1ι0
Y2+Y3ι0

, |X2 −X3ι0| ≤ |Y2 + Y3ι0|
(3.32)

where

A = X1Y3 −X3Y1 B = X1Y2 −X2Y1 −X3Y0 +X0Y3 C = X0Y2 −X2Y0 (3.33)

are the coefficients of the quadratic function of ι0 found by solving the system of equations given in Eqs. 3.27
and 3.2824.

24It is not apparent where the first equation for ι0 comes from. If we knew A had to be positive (and thus the logic is checking
if A is small) then I can see the first term there (−C/B) which is just the solution of the linear equation assuming A is 0. I
have not seen the second term before though and I cannot figure out how to get to it. Will have to ask Dr. Gaskell about this.
Similarly I am not sure about the two different equations for γ0. I know where they come from (solving either Eq. 3.27 or Eq. 3.28
for γ0) but I am not sure why using one or the other would be beneficial. I expect that this is related to the logic on A as well.
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ỹ

(k)
1
z̃

(k)
1


 x̃

(k)
4
ỹ
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Figure 15: In order to use bilinear interpolation we need to work in a temporary imaginary 5D space.
It is easier to think of this as something like a 3D vector field projected onto a plane. In
this image we are looking at the ιγ plane where each point corresponds to a surface point
expressed in the tilde frame. The point we are interested in is when x̃ and ỹ are equal to
0. This point is shown in red.

With ι0 and γ0 in hand it is now relatively straight forward to calculate the distance between the camera
and the intercept point of the cell by the line-of-sight vector using a standard bilinear interpolation on the
z̃i data. As long as ι0 and γ0 are between 0 and 1 (that is as long as they fall inside of our imaginary ιγ
grid) then our intersection distance is given by

z̃int = Z0 + Z1ι0 + Z2γ0 + Z3ι0γ0 (3.34)

where

Z0 = z̃
(k)
1 Z1 = z̃

(k)
4 − z̃(k)

1 Z2 = z̃
(k)
2 − z̃(k)

1 Z3 = z̃
(k)
1 − z̃(k)

2 − z̃(k)
4 + z̃

(k)
3 (3.35)

are the standard bilinear interpolation coefficients for the z−data.

We perform these steps for every cell which is intersected by the line-of-sight vector. Once we have all of our
distances then the minimum distance is the first intersection. If we compare this intersection point with the
landmark location then we can check to see whether the center of the landmark is occlude by other surface
geometry or not. This concludes the invisible checking of the landmarks.

3.3 Preparing the “Images”

Having selected which maplets are visible in our photo, we can now turn to examining the mathematical
foundation of SPC for navigation. The first grouping of routines are focused on preparing “images” that
will be used to calculate the required offsets between our predicted locations and actual locations. We quote
images here because we are actually not working with images in the original sense of the word. Instead we are
working with surfaces that also contain intensity values. The surfaces we are working with are not flat, and
in fact are the maplets themselves. Therefore, for each point in the grid of one of our “images” we have both
a height value and an illumination value. In practice, these images are always shown from above and thus
they look like flat images that we are used to seeing25. However, remembering that these are not flat images
will be key to explain some of the steps that may seem out of place in the following discussion26. In order
to help make this point clear consider Fig. 16 which shows both the flat image that we are usually presented
with and the flat image projected onto the maplet shape that represents what we are actually working with.

25From this point forward I have dropped the quotes around image when referring to these illuminated surfaces, mostly
because my pinky finger gets tired enough as is when writing latex without having to add quotes around a word numerous times

26I believe that it may actually be better to show the images at an angle to drive home the fact that they are not flat, but
that’s just me
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In addition, this is why we have used photo in the rest of the paper in place of image. Throughout we will
refer to the entire scene captured by the camera as a photo, photograph, or picture, and the maplet surfaces
with illumination data as images.
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Figure 16: When we talk about the predicted and extracted images of a maplet, we are actually
referring to the illumination values projected onto the maplet surface (as seen in the left
plot) despite the fact that we frequently show the illumination data on a flat surface (the
right plot).

3.3.1 Image prediction

To begin our discussion of preparing the images we will start by considering the steps used to predict our
image. We start here in hopes that it will help to make the non-flat surface image idea more clear. In our
prediction step, all we are doing is illuminating a maplet using a given illumination model at each grid in the
maplet frame. Since we do not necessarily know much about the composition of the surface this essentially
boils down to a geometry problem which is shown in Fig. 17. The steps simply entail (1) calculating the
localized normal vectors at each point, (2) calculating the incidence angles for each maplet grid point (angle
between the local normal vectors and the incoming direction of the collimated light source), (3) calculating
the reflection angle (the angle between the direction vector to the camera and the local normal vector), (4)
calculating the phase angle (angle between the incidence vector and the reflection vector), (5) getting the
illumination using the illumination model, and (6) adjusting the average brightness to match the extracted
image.

The maplet data that we have does not include local normal vectors for each grid location, so we need
some way to calculate them. This is done by considering the gradients of the height data in the x− and
y−directions of the maplet frame. Obtaining the gradient of the height data is a straight forward application
of finite differencing. We first do finite differencing on the height data in the x direction (column direction)
and then do finite differencing in the vertical direction (row direction)27. We can then use the gradients
at each grid point to determine the vectors in the direction of the surface in the x− and y−maplet frame
directions. To visualize this consider the fact that at maplet grid location k, to the best of our knowledge a
step of ∆x in the maplet grid x−direction will yield a change of ∆x∂hk/∂xk, thus a vector in the x−direction
of the surface at location k is given by

vx =
[

1 0 ∂hk/∂xk
]T
, (3.36)

where vx is the vector in the direction of the surface along the x−direction of the maplet frame, ∂hk/∂xk is
the gradient of the height data in the x−direction of the maplet frame, and we have let ∆x = 1. This works
similarly for the y−direction of the maplet frame. Since these two vectors lie along the surface to the best
of our knowledge, the cross product will give us the normal vector to the surface at that point. Because of

27In the SPC source code there are a few different ways the finite differences are done. We will not discuss these here as they
are all just different variations of finite differencing that use different chunks of the height data depending on what is available.
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Figure 17: The illumination model used in SPC is primarily a function of the geometry. Here, r̂M is
the unit vector pointing to the camera, ŝM is the unit vector pointing to the sun, and n̂k

is the local normal vector. Angle ik is the incidence angle and rk is the reflectance angle.
Note that all the vectors are pointing away from the surface here.

the unique structure of this problem the cross product of these vectors simply becomes

nk =
[
−∂hk

∂xk
−∂hk

∂yk
1
]T

(3.37)

where nk is the normal vector for grid location k. To visualize this, see Fig. 18.

Figure 18: The normal at each surface point can be found by taking the cross product of the x and y
gradient vectors at that point.

Having calculated the local normal vectors at each grid location for the maplet, the angles for steps 2-4 can
be easily found using the dot product of the vectors involved. Therefore we have

cos ik = n̂Tk ŝM (3.38)
cos rk = n̂Tk r̂M (3.39)

α = cos−1(ŝTM r̂M ) (3.40)

where ik is the incidence angle at location k, rk is the reflectance angle at location k, α is the phase angle,
n̂k is the local unit normal vector (unit vector in the direction of the local normal vector) at location k, ŝM
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is the unit vector pointing in the direction from the body to the sun expressed in the maplet frame, and r̂M
is the unit vector pointing in the direction from the landmark to the camera expressed in the maplet frame.

Once the geometry has been calculated, all that remains is to illuminate the maplet using the illumination
model and then to adjust the average brightness of the predicted image to match that of the extracted
image. This is done using one of two illumination models which are presented here in brevity 28. The first
illumination model that can be used (and the one that is used the most) is the McEwen model [4]. The
McEwen model is given by

Ik = ak

(
(1− β) cos ik + β

cos ik
cos ik + cos rk

)
(3.41)

where Ik is the illumination value for location k, ak is the albedo value for location k, and β = exp(−α/α0) is
a weighting term between Lambertian and Lommel-Seeliger scattering terms with α0 = 6029. The weighting
term was chosen to approximate McEwen’s lunar function [5]. The second illumination model is exactly the
same as the McEwen model, however it sets the value of β = 0.65, ignoring the dependence on the phase
angle.

The final step is to adjust the average brightness of the predicted image to match that of the extracted
image. This is (in its simplest form) done by multiplying the predicted image by the ratio between the
average illumination of the extracted image and the average illumination of the predicted image calculated
using Eq. 3.41:

λ = µe
µp

(3.42)

where lambda is the scaling term, µe is the average illumination of the extracted image, and µp is the
average illumination of the image predicted by Eq. 3.41. In addition, there may be a constant background
illumination present in the extracted image (due to atmosphere, a defect in the camera, or some other light
source) which we may want to try and capture. We can calculate this term using

φ = µpµp2 − µpµpe
µp2 − µ2

p

(3.43)

where φ is the constant background term, µp is the average of the illumination values of the predicted image
pixels that have valid data in both the predicted and extracted images, µp2 is the average of the squared
illumination values of the predicted image pixels that have valid data in both the predicted and extracted
images, and µpe is the average of the product of the illumination values of the predicted and extracted
images at pixels where there is valid data for both the predicted and extracted images30. Now we need to
be careful here. Since we need to use the images themselves to estimate the background term we need the
predicted and extracted images to be of the same area. Therefore it is beneficial to first check the normalized
cross correlation between these images and if the correlation value is low then to not try and estimate the
background term (if the correlation value is low then it indicates that the predicted and extracted images do
not match well and therefore are likely not of the same area). The correlation value can be computed using
the steps discussed in Sec.3.5 and then checked against a user specified value to protect against this31.

If the correlation check succeeds and we calculate a value for the background term then we need to adjust
our weighting term to account for the background term. We do this using

λ = µe − φ
µp

(3.44)

where λ is the weighting term. Therefore we can now describe our predicted image as

Ik = λak

(
(1− β) cos ik + β

cos ik
cos ik + cos rk

)
+ φ (3.45)

28There is also a third illumination model; however, this was developed solely for Vesta and is thus worthless for any other body
29There appears to be a missing factor of 2 here that is seen in the literature. The issue appears to be that the factor of 2 is

missing from the abstract of McEwen’s paper but is included in the body. Need to ask Dr. Gaskell about this.
30Figure out what is going on here and where this comes from.
31Since this is a normalized cross correlation the maximum correlation value is 1 which will only occur if the image is correlated

with itself. Because of this we can always skip calculating the background term by setting the correlation check to a value of
1, which will never be achieved since we are working with real data.
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which completes our image prediction.

3.3.2 Image extraction

The other side of the image preparation is the extraction of the maplet from the photo input into the
system. This process, which is actually much more complicated than the creation of the predicted image,
is completed in two main steps, with each main step having numerous smaller steps. The first step is to
perform the actual extraction of the illumination data onto the maplet surface, which is completed by first
determining the corresponding points between the maplet and photo and then by either interpolating (if the
maplet grid size is approximately the same size or smaller than the ground sample distance of the camera
pixels) or averaging (if the size of the maplet grid is much larger than the ground sample distance of the
camera pixels) the illumination values and assigning these values to each maplet grid location. Once the
image has been extracted onto the maplet surface, the data is “filtered” to handle shadows and other non-
visible data. The filtering is done by extending shadows to make up for the fact that shadows are not sharp,
by removing data that should not be visible due to the topography of the maplet using reflection angles and
ray tracing, and by removing data that should be shadowed according to ray tracing.

3.3.2.1 Projection onto the maplet topography

The first step in image extraction is to project the illumination data onto the maplet topography. In order to
do this we must determine the correspondences between the expected location of the landmark in the photo
frame and the location of the landmark in the asteroid-fixed frame. We know the asteroid-fixed location of
the landmark from our maplet and shape models, therefore we just need to calculate the expected photo
frame location of this point based on our current best estimate of the spacecraft’s state at the time the
picture was captured. This is a straight forward mapping through the Owen camera model described in
Sec. 1.1.1. Our next step is determine the photo frame locations of the rest of the maplet grid. We do this by
calculating the asteroid-fixed location for each grid point in the maplet frame that has height data, and then
mapping it through the Owen camera model to get the photo frame location. The asteroid-fixed location for
each point in the maplet is given by

(gk)B = smTMB (xk)M + vbody−lmk (3.46)

where (gk)B is the asteroid-fixed location of the kth point in the maplet, sm is a scaling term to make the
units into kilometers, TMB is the rotation matrix from the maplet frame to the asteroid-fixed frame, (xk)M
is the kth point in the maplet32, and vbody−lmk is the asteroid-fixed location of the maplet frame origin.

With the photo frame locations of the maplet points in hand we now need to check the relative size of the
maplet grid compared to the picture grid. We do this by first determining the Jacobian matrix that relates
a change in the maplet frame to a change in the photo frame and then taking the determinant of the x and
y components of this Jacobian which gives us the number of camera pixels per maplet grid (see Eq. 3.15
and surrounding for a description of this process and explanation of what the determinant approximates).
Once we have our camera pixels per maplet grid we now decide whether we are just going to use bilinear
interpolation, or whether we are going to average the illumination values of the photo to determine the
illumination in the maplet frame. If the camera pixels are larger than the maplet grid size then we will just
use bilinear interpolation. If the maplet grid size is bigger than the camera pixels then we will sample the
illumination within each pixel that the maplet grid covers and average these values to get our illumination
for that maplet grid (note that we will use bilinear interpolation in the sampling of the camera pixels for
this case as well).

For the bilinear interpolation, we must first determine the base pixel for each location we are trying to
interpolate. We can do this by rounding the location we are trying to interpolate minus half a pixel to the

32Note that each maplet point will comprised of integers for x and y and height values for z.
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nearest hole number33. With our base pixel determined, we can now define our grid for bilinear interpolation
as the base pixel, the pixel to the immediate right of the base pixel, the pixel immediately below the base
pixel, and the pixel immediately to the right and below of the base pixel34. Once we have our grid defined
we can begin the interpolation. We get the coordinates for our interpolation by subtracting the base pixel
from the point of interest (this should give us coordinates between 0 and 1). We can then calculate the
interpolation coefficients as

b0 = I0 (3.47)
b1 = I1 − I0 (3.48)
b2 = I2 − I0 (3.49)

b3 = I0 + I3 − I1 − I2 (3.50)

where bi are the interpolation coefficients, and Ii are the illumination values at the corners of the interpolation
grid, 0 corresponding to the base grid location and 3 corresponding to the lower right grid location. Finally,
our interpolated value is

i = b0 + b1gx + b2gy + b3gxgy (3.51)

where i is the interpolated illumination value at our point of interest and gx and gy are the coordinates of
our point of interest.

3.3.2.2 Extract filter

Just determining the illumination values on the surface of the maplet is usually not a good idea. This is
because the maplet is not flat. Therefore, just because interpolation gives an illumination value for a certain
point on the maplet, it doesn’t mean that the point should actually be illuminated or visible according to
the current best estimate of the spacecraft’s state. For instance, imagine a point located on the side of a
mountain opposite the current best estimate of the spacecraft. Because of misalignment and imaging noise,
our bilinear interpolation is likely to find an illumination value for this point on the maplet. In real life,
however, we know that there is no chance we can see anything on that side of the mountain, therefore it
would be best to zero that data out and to not include it in our correlation. These types of checks are
handled by the extract filter.

The extract filter relies heavily on two vectors to performs its functions. They are the incidence vector and
the reflection vector. The incidence vector is the unit vector that points from the body to the sun expressed
in the maplet frame (this assumes collimated light). The reflection vector is the unit vector that points from
the maplet frame to the spacecraft expressed in the maplet frame.

The first thing the extract filter does is to “enhance” shadows. Enhancing shadows means that it extends
any shadows to account for the fact that shadows are not sharp (according to the SPC source code at least).
To enhance the shadows, we first must consider in what direction the shadows are propagating. This is done
by considering the projection of the incidence vector onto the maplet frame xy−plane. Once we have the
direction the shadows propagate in we need to locate the edges of the shadows in the extracted image. In the
SPC software, shadows and invisible data are represented by illumination values of 0. Therefore, we need to
search for any grid cells in the extracted image that are nonzero and the three pixels along the direction of
the incidence vector are 0.

33To understand why we do this consider how the image pixel works. Each row and column corresponds to a pixel. Each
pixel has a size of 1×1 in units of pixels. Therefore the boundaries between each pixel are located at +0.5 and −0.5. Therefore,
when we round to the nearest hole number we will be getting the pixel that contains each point we are interested in. By first
subtracting half a pixel from each point we are interested in we actually adjusting so that any time we are interested in a point
that is in the −0.5 half of the pixel our pixel of interest will actually become the previous pixel. This is important because when
we are defining our corners for bilinear interpolation, we want to ensure that the point of interest is contained within the box
formed by those corners. If we didn’t adjust, then when we had a point of interest that was in the −0.5 half of a pixel our corners
would start at the nearest pixel to this point, and move to the right and down, and thus would not include our point of interest.

34In the SPC source code there are additional checks to see if there is valid data at these points, and if there is not to try to
get valid data from other surrounding pixels but this is not discussed here as it is pretty much just a long string of conditional
statements
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Once we have identified the edges of the shadows in our image we can begin our enhancements. The first
thing to determine is how much we should extend our shadows. This is done by considering the relative
resolutions of the maplet and image frames. If the maplet grid is at a finer resolution than the picture, then
we want to extend our shadows even more, if the picture is a finer resolution then we only want to extend
our shadows by some base amount. This can be figured out again using the determinant of the Jacobian
from the maplet frame to the photo frame:

ds = 3 +
⌊

1
detJxy

⌋
(3.52)

where ds is the number of grid cells to step along, 3 is the base extension of the shadows, Jxy is the x and y
columns of the Jacobian matrix from the maplet frame to the photo frame, det • indicates the determinant
of a matrix, and b•c indicates that the floor of the value should be taken (round down to the closest integer).

Now with our step size we can extend the shadows. Each pixel in the direction opposite of the incidence
vector projected onto the maplet frame within a distance of ds is zeroed out. Further, to help with blurry
images, we will also zero out cells that are along the inverse incidence vector within plus or minus two of
these points35. This concludes the enhancement of the shadows.

The final function performed by the extract filter is to zero out data that should be invisible according to
the geometry of the scene. This is done by placing a restriction on the reflection angle as well as through ray
tracing. In order to zero out data according to the reflection angle, we simply need to take the dot product
of the reflection vector with the local normal vectors (as described by Eq. 3.37). If the dot product between
the reflection vector and the local normal vector is either negative or very small then it means that point
on the surface is being viewed either from behind (if the dot product is negative) or at a very sharp oblique
angle (if the dot product is very small) and thus we cannot really see this patch of surface and should zero
out the data in the containing grid cell.

In order to remove invisible data through ray tracing, all we need to do is step along the reflection vector
from each cell in the maplet and check to see if the heights of the maplet ever obscures this vector. For each
point in the maplet the reflection vector is stepped along at a distance of one cell length intervals. At each
step along the reflection vector, the height of the maplet at that x and y point is interpolated using bilinear
interpolation. Finally, the interpolated height is compared with the current height of the step point and if
the interpolated height is higher then the originating cell is marked as invisible and zeroed out36.

This concludes the extract filter and the preparation of the images37.

3.4 Removing Maplets

After we have added the maplets that are visible in the image we may have found many maplets. This
can be undesirable because it can take a long time to process a lot of maplet per image. In addition, it is
likely that there are a good number of maplets that are not actually very useful due to their illumination
conditions or orientation with respect to the camera frame. Therefore, it may be beneficial to enforce stricter
conditions on the maplet geometry and illumination conditions. We can do this by either checking against
five additional criteria on the maplets or by manually specifying which maplets to remove (usually done by
visual inspection of the illuminated maplet image versus the extracted maplet image).

For the automatic removal of landmarks we need to check the removed data ratio of the extracted maplet
images (sometimes referred to as the invisible ratio of the maplet, but this can lead to confusion with the

35I don’t really know what is happening in the code here. For some reason we also zero out data that is located ±2[yinc xinc]T
but there is no explanation as to why. . .

36In the SPC code the reflection vector is artificially lowered by a small tolerance, likely to attempt to avoid allowing cells
that are partially occluded to remain illuminated

37In the SPC source code, the extract filter claims that it also uses ray tracing to zero out data that should be shadowed.
While there is code present to do this it is currently skipped over by a “goto” statement and there is no chance the code will
ever be actually run. I have ignored this code in this paper since it is not used but it acts exactly the same as the ray tracing
for the invisible data, except instead of stepping along the reflection vector we step along the incidence vector.
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invisible checking discussed before), the reflection angle (referred to as the emission angle in the SPC source
code, although emissions come from black bodies not illuminated bodies), the illumination percentage of the
extracted maplet images (referred to as the coverage percentage or the maplet-photo overlap in the SPC
source code), and the relative resolution of the photo pixels to the maplet grid size. The removed data ratio
of the extracted maplet images is simply the ratio of the number of pixels that were zeroed out by the extract
filter to the total number of pixels in the extracted image plus one. That is

datar = rempix

N2 + 1 (3.53)

where rempix are the pixels that were set to 0 by the extract filter and N is the total number of pixels along
one side of the predicted images ((2∗qsz+1) in the SPC source code). The reflection angle check just checks
to be sure that the reflection angle is not too large38. We can calculate the reflection angle as

r = cos−1(r̂Mz) (3.54)

where r is the reflection angle and r̂Mz is the z−component of the line-of-sight unit vector from the maplet
to the camera center expressed in the maplet frame39. The illumination percentage of the extracted maplet
image is simply the ratio of the total number of image pixels that have positive illumination values over the
total number of pixels. That is

illumr =
∑N
i,j Ip(i, j) > 0

N2 (3.55)

where illumr is the illumination ratio, IP (i, j) is the illumination value of the predicted image at row i and
column j, and summing over a logical equation means to add a 1 if the equation is true and to add a 0 if
the equation is false. Finally the relative resolution between the maplet and image can be calculated as

resr = rimg
sm

(3.56)

where resr is the resolution ration between the maplet cells and the photo pixels, rimg is the resolution of
the photo at the maplet in units of kilometers (or some other distance) per photo pixel, and sm is the maplet
scale factor with units of kilometers (or some other distance) per maplet cell40.

For each of these values, we compare it to a value specified by the user and throw out any maplets that do
not meet the requirements. For the good data ratio, if the computed value is less than the user specified
value then the maplet is kept (note that the user specified value should be the desired ratio times 1000
rounded to the nearest hole number). For the check on the reflection angle, maplets with reflection angles
lower than the user specified value are kept (note that the user value should be entered in degrees). For
the check on the illumination ratio, maplets where the computed value is greater than or equal to the user
specified value are kept (the user value should be entered in terms of the actual ratio). Finally two checks
are performed on the resolution ratio. The first check is that the resolution ration must be less than some
user specified maximum value and the second check is that the resolution ratio must be greater than some
user specified minimum value for the maplet to be kept (both values should be entered in terms of the actual
ratios desired).

3.5 Correlation

With the images prepared we can now turn to determining the offset that best aligns them. This can be done
through the use of a 2D cross correlation. A 2D cross correlation is the dot product between the two images,

38Recall that the reflection angle is the angle between maplet frame z−axis and the line-of-sight vector from the camera to
the maplet, therefore if this is large it means the maplet is being viewed at a large angle. Also remember that we have already
checked this value when we added the maplet so this is just a chance to put a stronger requirement on this angle.

39This is just a simplification of the dot product formula xT yT = ‖x‖‖y‖ cos(θ) taking into account that the maplet frame
z−axis expressed in the maplet frame is

[
0 0 1

]T
and the fact that both r̂M and the maplet frame z−axis are both unit

norm.
40A little more discussion is warranted here because this value can often be a point of confusion. This value has units of maplet

cells over photo pixels. Therefore, if this ratio is greater than 1 then it means that there is more than one maplet cell per photo
pixel, and thus the maplet has a higher resolution (each cell covers a smaller distance) then the photo. If the ratio is less than
1 then it means that each maplet cell covers more than 1 photo pixel and thus the photo is higher resolution than the maplet.
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that is, you take each overlapping element and multiply them together, and then sum all of these products.
We can do this many times, changing how the two images are overlapped each time, in order to generate a
correlation surface of the correlation values at each layout of the images. Once we get the correlation surface
we can use numerous techniques to try and get the sub-pixel offset that would provide the best correlation.

In SPC the correlation is a little more complicated than what is described above. First, it is actually a
normalized cross correlation, which makes it easier to compare the correlation peak values. Second, in order
to save memory and time the bounds of the correlation are restricted. This means that to attempt to
correlate over larger distances than what is in the bound we must re-sample the images to a lower resolution.
We will now begin discussing exactly what is happening in the SPC correlator.

In the SPC correlator, the predicted image is moved over-top of the extracted image. This is done in
increments of full pixels (so that we don’t have to perform bilinear interpolation each new offset we try
in the correlator). Further, as mentioned above, if we are trying to correlate over anything greater than
a 11 × 11 grid then the images are binned to a lower resolution instead of increasing the step size. This
helps to keep the amount of computation required for the correlator constant even when large offsets are
required (although after performing a binned correlation it is recommended to eventually perform a non-
binned correlation by updating the images using the binned correlation result and decreasing the size of the
binning by a factor of 1 each time). The binning process is fairly straight forward, it is a simple averaging
binning. If we wish to correlate across a range of 5n pixels in both the row and column directions of the
images, then we bin the images as

Ib(rb, cb) =
∑(rb−1)n
i=1+(rb−1)n

∑(cb−1)n
j=1+(cb−1)n I(i, j)∑(rb−1)n

i=1+(rb−1)n
∑(cb−1)n
j=1+(cb−1)n I(i, j) > 0

(3.57)

where Ib(rb, cb) is the illumination value of the binned image at pixel (rb, cb), I(i, j) is the illumination value
of the full image at pixel (i, j), n is the multiplier specifying the number of pixels we want to correlate over,
and the summation on the logical equation means to add a 1 if true and a 0 if false. We then correlate over
a 11× 11 grid on the binned images, effectively correlating over the 11n× 11n region in the original images
we desired. Note that this is a courser correlation than when n = 1. This is because the size of the pixels
we are correlating over are actually the size of n2 pixels in the original images, and thus, when we determine
our peak correlation location to some sub-pixel accuracy, it is sub-pixel accuracy in the new larger pixels,
and thus likely not sub-pixel accuracy for the true pixels.

With the binned images in hand we can turn to the task of correlating them over our 11 × 11 grid. As
mentioned before, the correlator used is a normalized correlation technique. This means that our correlation
values are constrained to fall between −1 and 1. In addition it means that we are correlating based on
unbiased images (zero mean) with variances normalized to be equal to 1. In the SPC source, the correlation
for each step is performed as

C =
1
N

∑k
i=1
∑l
j=1 (Ipb(i, j)Ieb(i, j))− µpbµeb

(µpb2 − µ2
pb)(µeb2 − µ2

eb)
(3.58)

where C is the correlation value, N is the number of pixels that are nonzero in both the binned predicted
(offset) and extracted images, µpb is the average illumination value of the binned and offset predicted pixels
that are nonzero in both images, µeb is the average illumination value of the binned extracted pixels that are
nonzero in both images, µpb2 is the average of the square of the illumination values of the binned and offset
predicted pixels that are nonzero in both images, and µeb2 is the average of the square of the illumination
values of the binned extracted pixels that are nonzero in both images. The correlation value is calculated
over a 11× 11 grid, where the predicted image has been offset from the center by some amount contained in
−5n : n : 5n pixels and then binned.
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It may be beneficial to now discuss where this formula for the normalized crossed correlation comes from41. In
the standard normalized cross correlation we take the dot product of two zero mean unit standard deviation
images. That is

C =
∑

(Ipb − µpb) (Ieb − µeb)
σpbσeb

(3.59)

where µpb is the average illumination value of all pixels in the binned predicted image that are nonzero in
both binned images, µeb is the average illumination value of all pixels in the binned extracted image that are
nonzero in both binned images, the summation sign means to sum over all pixels that have valid data in both
images (we will now use this notation to make the following derivation more efficient), and σ• indicates the
standard deviation of all of the elements of the matrix (or all of the pixels with valid data in the images)[6].
This is obviously different from Eq. 3.58 and in fact, if we simply expand the multiplications and substitute
in the definition of a standard deviation then Eq. 3.58 looks wrong

C =
∑

(IpbIeb − Ipbµeb − Iebµpb − µpbµeb)√∑(
I2
pb − 2µpbIpb + µ2

pb

)∑(
I2
eb − 2µebIeb + µ2

eb

) (3.60)

as it appears like we have lost the cross terms of the product in the numerator as well as in the equations
for the standard deviation42. If we further expand this we can see what happened. Substituting in the
definitions of the norms and distributing the sums we get

C =
∑

IpbIeb −
∑

Ipb
∑

Ieb/N −
∑

Ieb
∑

Ipb/N −N
∑

Ieb
∑

Ipb/N2√(∑
I2
pb −

2
∑

Ipb

∑
Ipb

N + N
∑

Ipb

∑
Ipb

N2

)(∑
I2
eb −

2
∑

Ieb

∑
Ieb

N + N
∑
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from which we can simplify to get

C =
∑

IpbIeb −
∑

Ipb
∑

Ieb/N√(∑
I2
pb −

∑
Ipb
∑

Ipb/N
) (∑

I2
eb −

∑
Ieb
∑

Ieb/N
) (3.62)

Now, if we simply multiply by the unitary (1/N)/(1/N) then we can get back to the form of Eq. 3.58 which
completes the derivation of the SPC correlator.

3.5.1 Sub-pixel detection

Once we have correlated our images for every offset we can now attempt to extract out the sub-pixel location
of the peak correlation value. We do this by first locating the pixel location of the peak correlation value
(which is just the maximum correlation value). Taking the pixel level shift that created the highest offset we
can get sub-pixel accuracy by considering the surrounding correlation surface. We do this by fitting a curve
to the surface and locating the peak location of the curve, which is also presumably the sub-pixel offset that
would give us the absolute highest correlation peak.

There are many types of curves and methods we could use to get the sub-pixel accuracy. In the SPC source
code a relatively simple technique of fitting a first order Taylor series to the gradient of the correlation
surface is used. Furthermore, the SPC source assumes that the function governing the correlation surface
is independent in the row and column directions; therefore, we can perform 2 first order 1D fits to the
correlation surface rather than performing a first order 2D fit. The Taylor series fit used for each direction
is

dy
dx (x) ≈ dy

dx (x0) + d2y

dx2 (x0) (x− x0) + . . . (3.63)

41I spent numerous hours trying to figure out how to get from the standard normalized cross correlator to the one present in
the SPC code. Therefore, I would imagine other people might be similarly confused. In addition I want to give purpose to my
needless struggle of not thinking to use simple algebra . . .

42Note that the square terms in the denominator mean to square each element of the matrix, not to multiply the matrix by
itself. Yes this notation sucks but believe me when I say that it is much more readable than the more precise notation we were
using before
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where we have fit a Taylor series expansion to the derivative dy/dx about point x0 with y representing the
correlation values and x representing a change in either the row or the column direction of the correlation
surface. We will do this fit in both the row and column direction. Now what we really want out of these fits
is to solve for the row and column that gives the peak value. Therefore we can rearrange our Taylor series
expansion to be

x ≈ x0 + d2x

dy2 (x0)
(
dy
dx (x)− dy

dx (x0)
)

(3.64)

Further, since we know we are looking for the peak value, assuming the correlation surface is a smooth
function, we know that the peak value must occur when the first derivative equals 0 by the first derivative
test43. Therefore, we can solve for the offset that we desire by setting the dy/dx(x) term equal to 0. All that
remains is to calculate the derivatives at the pixel level peak correlation value which can be done through
finite differencing:

d2x

dy2 (x0) = (y(x0 + 1) + y(x0 − 1) + 2y(x0))−1 (3.65)

dy
dx (x0) = (y(x0 + 1)− y(x0 − 1)) /2 (3.66)

where x0 ± 1 indicates a step right/left or up/down in the correlation surface, depending on whether we are
considering the horizontal or vertical fit. This completes the sub-pixel fit of the correlation surface.

3.5.2 Maplet frame to image frame conversion

All that remains in the SPC routines is to transform the peak correlation location into the location of the
maplet in the image frame. We do this by first multiplying the peak correlation offset from the middle of
the correlation surface by the step size that we used while correlating. This gives us the offset between the
predicted location of the landmark and the actual location of the landmark in terms of maplet image pixels.
Now we need to convert these maplet pixels into the pixels of the photo frame. This is done by once again
turning to the Jacobian that transforms from the maplet frame to the photo frame. All we need to do is
multiply the shift expressed in terms of maplet pixels by the first two columns of the Jacobian matrix, that
is

∆lI = Jxy∆lM (3.67)

where ∆lI is the shift between the expected and actual landmark locations in the image frame and ∆lM
is the offset of the peak correlation value in the maplet frame. This completes the SPC for navigation
processing. The results can now either be used to update the spacecrafts state, or used to re-extract and
predict the maplet images so that a better correlation can be achieved.

4 Conclusion

In this document we have presented the basic mathematical ideas behind the OSIRIS-REx surface feature
OPNAV software. We began by introducing the ideas of surface feature OPNAV and explaining the frames
and frame transformations that are used throughout the software. We then explained the software that
uses the 2D-3D point correspondences generated by SPC for navigation to update the state of the space-
craft. Finally we examined each module of the SPC for navigation routines and explained how they are
implemented.

43Yes the first derivative test only guarantees a local extrema; however, there are checks in the code that require that the
correlation values are all decreasing around the correlation peak (thus the correlation peak cannot be on the edge of the
correlation surface) and this ensures that the first derivative test will actually identify only a maximum. . .
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